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4 | Introduction

Abstract
There have long been cases of discrimination in access to capital and lending
opportunities in financial services. With the introduction of machine learning,
major concerns have arisen in regards to perpetuating historical human bias and
in explaining credit decisions to consumers. In this whitepaper, lenders, vendors,
and advisors create a common framework and set of definitions for key machine
learning concepts, so that market participants, regulators, policymakers, and
other stakeholders can all speak the same language when addressing novel
opportunities and risks. We aim to define discrimination and interpretability in
the context of fair lending and machine learning, and then to discuss important
considerations for machine learning in the equitable and transparent use of
algorithms to underwrite credit lending decisions.

Keywords: Machine Learning, Bias, Fairness, Explainable AI, Fair Lending,
Machine Learning Interpretability, Responsible AI.

1 Introduction
The proliferation of machine learning (ML) has the potential to greatly improve
outcomes for consumers, businesses, and other stakeholders across a wide
range of applications and industries. While the promise of ML has already
been realized, we anticipate the proliferation of ML will increase these benefits
throughout various sectors of the economy. Within the financial services industry,
lenders’ use of ML tools to measure and identify risk in the provision of credit
will likely benefit not only financial institutions (FIs), but also the consumers and
businesses that obtain credit from the lenders. ML systems’ increased accuracy
of assessments of creditworthiness relative to traditional statistical modeling
will not only allow lenders to manage risk and earnings more effectively, but
will also enable lenders to expand access to credit to communities, individuals,
and businesses that were previously unable to access the traditional mainstream
financial system.

When FIs adopt ML systems, they are often better positioned than companies
in other industries that lack expertise in mathematical modeling. In fact, many
large FIs have considerable experience developing and deploying sophisticated
mathematical and statistical models to support lending and decision-making
functions. When skilled modelers and data scientists have access to high-quality
data and tools, and if management is actively engaged in harnessing the value
of statistical modeling, the adoption of ML systems is a natural next step in
a lender’s process of technological evolution. Further, lenders generally have
strong guardrails in place for robust model testing and validation. Because of
this wealth of experience and strong protections, the adoption of ML by FIs
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is more likely to happen in a manner that helps to minimize the inherent risks
associated with this technology.

On the other hand, challenges may arise since FIs are governed by FI-specific
development, validation, and audit processes. Because the governance process
is generally extensively prescribed, changing it to adopt new technology can
be a slow-moving and arduous process. Further, a complex regime of state
and federal regulations aim to promote transparency and stability for predictive
modeling systems and prohibit illegal discriminatory outcomes.1 Excessive and
lagging layers of governance and regulatory requirements can detrimentally
hinder lenders’ ability to adopt ML systems, and may actually undermine the
goals of transparency, stability, and fairness.

As such, one goal of this whitepaper is to continue the dialogue around the
application of ML methodologies in the context of credit decisions. We propose
to establish uniform definitions of key ML concepts, so that market partici-
pants, regulators, policymakers, and other stakeholders can all speak the same
language. By sharing a common language and understanding the possibilities
and risks presented by ML, we believe that the relevant stakeholders will be
able to effectively identify considerations that need to be addressed so that this
technology can be employed in the safest, fairest, and most timely way possible.

Another goal of the whitepaper is to describe how to mitigate adverse impli-
cations of this technology with the proper controls, and exhibit the various
methodologies that have been proliferated in the ML arena. This whitepaper
uses the current legal and regulatory environment as a foundation to add critical
context to a broad discussion of relevant, substantial, and novel ML method-
ologies. We also provide a comparison between traditional methodologies and
ML, show ways to potentially improve fairness, and discuss examples of explain-
able and interpretable models. The paper is organized as follows: Section 2
discusses the benefits of ML; Section 3 defines phrases related to discrimination,
explanation, interpretable models, and scope; Section 4 provides details and
concerns regarding existing and newer methodologies; and Section 5 concludes
the whitepaper by stressing the importance of collaboration and governance to
promote equitable, stable, and transparent lending models.

2 Benefits of Machine Learning
Like many past and present commercial technologies and models, ML presents
both opportunities and risks. This section briefly addresses the principal op-

1Examples of legal and regulatory standards applicable to lenders include: The Equal Credit
Opportunity Act (ECOA), The Fair Credit Reporting Act (FCRA), The Fair Housing Act
(FHA), and regulatory guidance such as Interagency Guidance on Model Risk Management
(Federal Reserve Board, SR Letter 11-7).
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portunities for using ML in credit lending, while subsequent sections present
analysis on various risks and tradeoffs. In this whitepaper, we consider why FIs
would even consider ML for high-stakes use cases in credit lending.

ML has already become widespread in its applications in various sectors across
the economy, including in many areas of consumer financial services, such
as customer marketing, fraud detection, and, to a somewhat lesser extent,
underwriting and pricing. Through advances in modern computing power, ML
algorithms search for obscured patterns within and across features, enabling
computers to learn to make decisions both faster and often with greater accuracy
than can be achieved by humans. The ability to leverage this speed and efficiency
has made ML methods effective and viable alternatives to traditional modeling
methodologies. Additional advantages include ML’s ability to impose fewer
assumptions on the distribution of training data and its capacity to efficiently
use a far greater number of input features, both of which often enable superior
predictive accuracy.

ML models can be applied to a wide variety of data sources, some of which may
help reduce the population of consumers and businesses that are currently “credit
invisible” due to lenders’ over-reliance on narrow datasets. Additionally, since
ML can incorporate more information about a given person’s creditworthiness
in making its prediction, it streamlines the ability for lenders to incorporate
so-called “alternative data”, such as rent and utility payments that may allow
lenders to assess the credit quality of thin file or no credit score applicants who
previously would have been rejected for credit.2 Since these applicants tend
more frequently to be members of minority groups, ML’s ability to incorporate
this additional data can lead to more inclusiveness and a broader population
receiving credit. Thus, ML models offer the potential to push the “efficiency
frontier” by offering benefits to both customers (by potentially expanding credit
access to new segments) and FIs (in the form of loan growth and decreased
losses).

Perhaps counter intuitively, the complex nature of ML provides opportunities
to make models fairer, as well. Traditional methods often presented limited
options for making models fairer and frequently any changes to the model
would cause its quality to deteriorate to the point where it was no longer useful
from a business perspective. ML is generally the opposite. For a given dataset,
data scientists are often able to identify large numbers of model specifications
that provide virtually identical predictive quality. Because of this, it is not clear
which of these model specifications will truly be the most predictive model once
it is put into use (this is widely known as the “multiplicity of good models”).
This multiplicity presents an opportunity for making lending fairer: since we

2See Interagency Statement on the Use of Alternative Data in Credit Underwriting for a
working definition of alternative data and an outline of its opportunities and challenges.

https://files.consumerfinance.gov/f/documents/cfpb_interagency-statement_alternative-data.pdf
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have many models that are equal in predictive quality, we can also optimize
fairness. Thus, among the approximately equally predictive models, lenders can
choose one that is also the fairest. Finally, advances in the interpretability of ML
now likely allow for such fair and accurate models to be explained to business
partners, consumers, and regulators. Definitions and important considerations
for preventing discrimination and increasing interpretability in ML are discussed
in greater detail in the sections below.

3 Definitions
Establishing a common language is essential for stakeholders to accurately be
able to discuss issues. Since ML is an evolving field of computational science,
misconceptions and myths are bound to emerge in the public dialogue with terms
and phrases that may, or may not, be relevant to the practice of ML in lending.
Buzzwords and vague or inconsistent definitions are often counter-productive
for nuanced discussions of complex topics, so Section 3 seeks to provide specific,
uniform definitions for key concepts relating to ML in lending.

3.1 Discrimination: Protected Classes and Legal
Standards

Since the 1960s, the US has had laws that prohibit illegal discrimination and
establish a strong framework for safeguarding the rights of certain groups
of consumers that have been historically disadvantaged and, thus, deemed
“protected classes”. For example, the Equal Credit Opportunity Act (ECOA)
prohibits illegal discrimination in any aspect of a credit transaction based on
an applicant’s race, color, religion, national origin, sex, marital status, or age,
as well as other “prohibited bases”. Similarly, the Fair Housing Act (FHA)
prohibits illegal discrimination in the mortgage lending or housing context.3

There are two principle theories of liability under ECOA and FHA for discrimina-
tion against members of protected classes: “disparate treatment” and “disparate
impact”.4 Below we outline commonly accepted definitions of these terms.

Disparate Treatment: Disparate treatment occurs when a lender does not
provide credit, or provides credit at less favorable terms, to an applicant or
customer (respectively). In ML, disparate treatment may occur if a system
explicitly considers protected class status or a very close substitute as an input
to the system (commonly referred to as a “proxy”), such as including a feature

3Prohibited bases under FHA include race, color, religion, national origin, sex, familial
status, and disability.

4CFPB Supervision and Examination Manual, Part II, Section C, Equal Credit Opportunity
Act (October 2015).
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or using segmentation. Disparate treatment discrimination is always illegal in
lending.

Disparate Impact: Disparate impact occurs when a protected class experiences
a larger share of less favorable outcomes as a result of an otherwise non-
discriminatory and legitimate decision-making process. Disparate impact is not
necessarily a violation of law and may be justified by a “business necessity”,
such as cost or profitability. However, there may still be a violation if the lender
could have used an alternative policy or practice that had a less discriminatory
effect.5,6

To illustrate, consider the effect of using a person’s income when a lender
decides whether to underwrite a loan. Of course, a lender would be remiss not
to consider a borrower’s income. Under disparate impact theory this would be
considered a “facially neutral factor” – it is a business-justified factor because
it is predictive of the borrower’s ability to repay. However, among most cross
sections of the US population, certain minority groups have lower incomes on
average relative to Non-Hispanic Whites. Thus, when a lender considers income
in its lending decision, the use of income could cause a disparate impact if the
population being scored was one where the members of the minority group(s)
had lower average incomes than Non-Hispanic Whites. Whether this disparate
impact would rise to the level of a fair lending violation depends on whether
other measures of the borrower’s ability to repay could be used in place of, or
in conjunction with, income, where that factor led to similarly predictive results,
but lower levels of disparate impact.

Separate from the legally defined terms above, we also note that phrases and
concepts such as “Ethical AI” or “ML Fairness”, have become used widely
in academic literature and in numerous media outlets, but are still somewhat
amorphous or ill-defined. Because many similar concepts have already been
discussed and evaluated in the context of employment, housing, and credit
discrimination, techniques put forward under these new banners are often less
attuned to regulations or legal precedent. However, many potentially exciting
technological developments are revealing how ML can be made fairer. When
these methods are aligned with accepted legal definitions of fairness, they not
only benefit consumers, but are also more likely to lessen regulatory or legal
risk.7

5Id.
6The US Supreme Court established the disparate impact theory in Griggs v. Duke

Power Co. (1971), however there have been numerous subsequent court cases challenging
whether disparate impact is cognizable under ECOA. These issues are outside the scope of
this whitepaper.

7For additional information, interested readers may follow the evolution of the free
textbook, Fairness and Machine Learning [1], in addition to other reputable publications.
An Introduction to Artificial Intelligence and Solutions to the Problems of Algorithmic
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3.2 Explanation, Interpretable Models, and Scope
Definitions

One of the common myths of ML is that it creates “black-box” systems.
However, this notion has been dispelled in recent years with the advent of a
number of tools that increase transparency into ML-based decision-making.
Transparency into the intricacies of ML systems is achieved today by two
primary technical mechanisms: directly interpretable ML model architectures
and the post-hoc explanation of ML model decisions. These mechanisms
are particularly important in lending because, under ECOA’s implementing
regulation, Regulation B, and the Fair Credit Reporting Act (FCRA), many
credit decisions that are adverse to the applicant must be summarized to
consumers through a predefined set of short written explanations known as
“adverse action notices”.

Adverse Action Notices: Under Regulation B, lenders must notify an ap-
plicant in writing of the primary reasons for taking an adverse action on a
loan application within a specific time period.8 When using ML systems to
make credit decisions, the principal reasons included on adverse action notices
are explanations that are based on ML system input features that negatively
affected the applicant’s score or assessment. Until recently, generation of
these customer-level explanations had been considered a serious impediment to
the adoption of ML in lending, but beginning around 2016, open source and
commercial implementations of more transparent ML approaches became more
commonly available.

Regulation B provides standards for the factors lenders may use and how lenders
must inform applicants of credit decisions when those decisions are based on
credit scoring models.9 For a rejected application, lenders must indicate the
principal reasons for the adverse action and accurately describe the features
actually considered. The notice must include a specific considered input feature,
but is not required to state how or why a given feature contributed to an adverse
outcome. An examination of the regulatory requirements for adverse action
notices demonstrates that several of the methods described below could prove
useful in ensuring that ML credit models are employed in a compliant manner.

Interpretability and Explainability: Although not strictly defined in the con-
text of fair lending, relevant phrases from the academic literature and data

Discrimination is an additional resource that specifically addresses concerns about algorithmic
fairness for FIs [2].

8See 12 CFR §1002.2(c). The term “adverse action” is defined generally to include a
“refusal to grant credit in substantially the amount or on substantially the terms requested”
by an applicant or a termination or other unfavorable change in terms on an existing account.

9See 12 CFR §1002.9(b) and the Official Commentary thereto included in Supplement I
of Regulation B.

https://bit.ly/2J37zXh
https://bit.ly/3pUSkQR
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science community include “interpretable” and “explanation”. Finale Doshi-
Velez and Been Kim define interpretability as, “the ability to explain or to
present in understandable terms to a human” [3]. Professor Sameer Singh of
the University of California at Irvine defines an explanation in the context of an
ML system as a “collection of visual and/or interactive artifacts that provide
a user with sufficient description of a system’s behavior to accurately perform
tasks like evaluation, trusting, predicting, or improving a system” [4]. “Inter-
pretable” is usually a descriptor for directly transparent or constrained ML model
architectures, and “explanation” is often applied to a post-hoc process that
occurs after model training to summarize main drivers of model decisions. Both
concepts are important for adverse action notice reporting, because the more
interpretable and explainable an ML system, the more accurate and consistent
the associated adverse action notices.

Global v. Local Scope: A closely related concept to explanation is “scope”.
ML systems can be summarized “globally”, meaning across an entire dataset or
portfolio of customers, and “locally”, meaning for only a subset of a dataset
or a smaller group of customers, including a single customer. Both global and
local explanations are important to FIs when deploying ML. Global explanation
results are often documented as part of an FI’s model governance processes to
meet regulatory standards on model risk management (e.g., Federal Reserve
Board SR Letter 11-7), while local customer-specific explanations are likely
to be a primary technical process behind adverse action notice generation for
FCRA and ECOA compliance.

Due to the proliferation of various local ML explanation techniques and their
relevance to adverse action notice generation, this whitepaper proposes two
additional definitions of locality: “data locality” and “value locality”. “Data
locality” refers to the subset of columns and rows of a dataset over which
aggregate statistics are calculated to generate an explanation. An explanation
method is said to have “value locality”, if to determine the contribution of one
input predictor for an individual ML-based decision, it is required to provide
the values of all input predictors for that individual. For value-locality, an
explanation depends on the rest of the predictor values and would change if
those values also changed. See Figure 1 for an illustration of these concepts. In
practical terms, value locality implies that adverse action reasons based on input
features explaining why an application is rejected for credit, or any explanations
for other types of ML predictions, are not independent and are intrinsically
linked to the value of all other input features. For instance, decreases in income
are often linked to increases in credit line utilization and changes in employment
status. Value locality is likely a positive attribute for an explanation, since input
features are rarely actually independent.

https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf
https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf
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Figure 1: Illustration of scope concepts data global, data local, value global,
and value local. Figure courtesy of Discover Financial Services.

4 Considerations

The boosted accuracy promised by ML lending models will require model
developers and validators to carefully balance the high predictive capacity of
ML with both well-established and novel considerations around discrimination,
stability, and transparency. To better achieve this balance, Section 4 discusses
some of the primary discrimination and interpretability concerns that arise when
using ML in lending.

4.1 Discrimination

There are many ways that analysts and data scientists can define and mitigate
discrimination in ML.10 However, only a subset of the discrimination measure-
ment and mitigation techniques available today are likely to be appropriate for
fair lending purposes. This subsection puts forward a few established discrimi-
nation measurements before discussing some newer measures and mitigation
techniques, and explains why, if some of these newer approaches are used, fair
lending regulations must be carefully considered in order to properly mitigate
compliance risk.

10See 21 Fairness Definitions and Their Politics.

https://www.youtube.com/watch?v=jIXIuYdnyyk
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4.1.1 Traditional Fair Lending Discrimination Definitions

Given the recent interest in fairness and ethics in ML, it may appear to some
observers that algorithmic discrimination is a new issue. On the contrary,
testing outcomes in education, lending, and employment for discrimination is
a decades-old discipline [5]. Measures such as marginal effect (ME), adverse
impact ratio (AIR), and standardized mean difference (SMD, which is also
known as “Cohen’s d”) have been widely used in fair lending and are likely still
some of the best ways to test for discrimination in ML lending models.

ME is used when reviewing a binary, yes-no, decision such as loan acceptance.
ME is the difference between the acceptance rate for a control group (often
Whites or males) and a protected demographic class of interest, reported as a
percentage:

ME ≡ 100 · (Pr(ŷ = 1|Xc = 1)− Pr(ŷ = 1|Xp = 1)) (1)

where ŷ are the model decisions, Xc and Xp represent binary markers created
from a demographic attribute, c denotes the control group, p indicates a
protected group, and Pr(·) is the operator for conditional probability.11

Importantly, ME can only be interpreted within the context of a given lending
scenario. As a hypothetical example, a male-female ME of 4% would often be
a highly noteworthy difference in mortgage lending to a population of prime
consumers, because class-control differences in credit quality among prime
consumers is usually relatively small – particularly for this example because
women often have higher average credit quality. On the other hand, a Minority-
to-Non-Hispanic White ME of 4% might not be as unusual for something like
a credit card offered to consumers across a wide spectrum of credit quality
– particularly if the population includes those with thin credit files. This is
because some minority groups are more frequently found at the lower end of
the spectrum of perceived credit quality as measured using traditional scoring
systems. Thus, while minorities with a given model score would be treated the
same as a Non-Hispanic White who had the same score, the average offer rate
by class would be lower, leading to the higher ME.12

11See Consumer Financial Protection Bureau, Supervisory Highlights, Issue 9, Fall 2015 , p.
29.

12Regardless of the product, ME of 4% would warrant a fair lending review.

https://files.consumerfinance.gov/f/201510_cfpb_supervisory-highlights.pdf
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AIR is another well-known and widely accepted measure of discrimination used
for evaluating yes-no decisions. AIR is the ratio of the acceptance rate for a
protected class and the acceptance rate for the control group.13

AIR ≡ Pr(ŷ = 1|Xp = 1)

Pr(ŷ = 1|Xc = 1)
(2)

A lower AIR would indicate that a lower percentage of applicants within the
protected class are accepted than applicants in the control group. Importantly,
AIR is one measure of disparate impact that is associated with a published
practical significance threshold. Specifically, in some employment law contexts,
AIR values below 0.8 that are statistically significant may be considered prima
facie evidence of illegal disparate impact discrimination.14

SMD is the difference in the mean protected class prediction, ¯̂yp, minus the
mean control class prediction, ¯̂yc, divided by the standard deviation of the
population prediction, σŷ:

SMD ≡
¯̂yp − ¯̂yc

σŷ
(3)

A higher SMD indicates a greater disparity in outcomes between the protected
class members and the control group. Like AIR, SMD also has frequently cited
thresholds that indicate small (0.2), medium (0.5), and large (0.8) differences
between predictions for two groups [6]. Unlike the two other measures defined
in Eqs. 1 and 2, SMD is also appropriate for measuring continuous outcomes,
such as credit limits and interest rates.

4.1.2 Recently Proposed Discrimination Definitions and Dis-
crimination Mitigation Techniques

In recent years, ML and fair lending experts have explored ways to measure
and mitigate discrimination in ML. These discrimination mitigation techniques

13See Uniform Guidelines on Employee Selection Procedures (1978) §1607.4.
14This threshold might be considered a “bright line” marker of concern, but regulators and

courts are not bound to this threshold. Additionally, while this standard was put forward
by the Equal Employment Opportunity Commission (EEOC) for matters of employment
discrimination, it has not been given explicit approval by any FI regulators in the credit or
housing context. Thus, simply because a model shows AIR values above 0.80 does not mean
that it would not be found to be illegally discriminatory. For guidance in the employment
context, see Questions and Answers to Clarify and Provide a Common Interpretation of
the Uniform Guidelines on Employee Selection Procedures. Unfortunately, we know of no
published guidance by FI regulators about these standards, but this knowledge comes from
our experience working with lenders and regulators.

https://www.eeoc.gov/policy/docs/qanda_clarify_procedures.html
https://www.eeoc.gov/policy/docs/qanda_clarify_procedures.html
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come in three forms: pre-processing, in-processing, and post-processing. Pre-
processing techniques (e.g., reweighing [7]), diminish bias in the data used
to train the ML models. In-processing methods (e.g., adversarial de-biasing
[8]) are ML algorithms that themselves remove bias from their predictions as
they learn. Post-processing techniques (e.g., reject option classification [9])
change the predictions that come out of an ML model in order to minimize
discrimination.15

4.1.3 Considerations for Regulatory Compliance

It is imperative that FIs employ the appropriate use of discrimination testing
and mitigation methods for regulated applications in fair lending because some
methods may lead to counterproductive results or even result in non-compliance
with anti-discrimination statutes.

Regarding measuring fairness, it is difficult to optimize on multiple metrics of
fairness at one time – there is necessarily a trade-off where making a model
fairer by one measure makes it appear less fair by another.10 For example,
choosing a model that provides more balanced error rates across protected
classes will often correspond to choosing a model that gives loan offers to fewer
protected class members. While academic literature on ML fairness has often
focused on balanced error rates, regulators and courts have generally focused
on lending rates. Certain open source and commercially available software have
generally followed the academic practice and focused on measures of relative
error rates.16 While these are important and often useful measures of fairness,
if a lender were to choose among models based on error rates alone, then they
may cause traditional measures of disparate impact, such as ME or AIR (see
Subsection 4.1.1), to become worse. Therefore, focusing on more established
discrimination measures may be the safer route for today’s practitioners in fair
lending.

Similar scenarios can also arise for many newer discrimination mitigation tech-
niques. Since ECOA proscribes the use of protected class status when making
a lending decision – even if the lender intends to use it to make its lending de-
cisions fairer – the discrimination mitigation methodologies that require explicit
consideration of protected class status in training or production are not likely to
be considered acceptable. In fact, because FIs are explicitly legally prohibited
from collecting information such as race and ethnicity (apart from mortgage
lending), these techniques are simply infeasible.

15We cite these specific references because they have influenced academic and popular
debates about algorithmic discrimination, and are relevant for predictive modeling practitioners
in general. However, these techniques sometimes fail to meet the requirements set forth by
applicable regulations in fair lending as addressed in the following section.

16E.g., Aequitas or H2O Driverless AI.

https://github.com/dssg/aequitas
https://bit.ly/333AAZS


Considerations | 15

Given such restrictions, mitigation approaches that perform feature selection
and hyperparameter searches may be considered natural extensions of traditional
approaches and are likely to be subject to less concern by regulators. Other
methods that do not rebalance data or decisions and that do not explicitly
consider protected class status may gain wider acceptance as they are used
more frequently and are shown to be effective ways to decrease discrimination.
Examples of these techniques may include methods that modify the objective
function of an algorithm to minimize discrimination during the learning process.

4.2 Interpretability

Like discrimination testing and mitigation approaches, many new techniques for
increasing transparency and understanding in ML models have been introduced
in recent years. These new techniques create both transparent models and
summaries of model decisions. They are already being used in the financial
services industry today17 and are likely to be deployed for lending purposes. This
subsection introduces some of these techniques and important considerations
for their use in the lending context.

4.2.1 Examples of Interpretable Machine Learning Models

In the past, ML researchers and practitioners operated under what appeared
to be a natural trade-off: the more accurate a model, the more complex, and
the harder to understand and explain. Due to adverse action notice disclosures,
model documentation requirements, and discrimination concerns, black-box ML
models were typically not considered a viable option for lending. Today, the
landscape has changed for predictive modelers in credit lending with the advent
of highly accurate and highly interpretable model architectures that appear to
break the so-called “accuracy-interpretability trade-off”. In fact, some leading
scholars have posited that, for the kinds of structured tabular data used most
commonly in lending models, black-boxes are likely not more accurate than
interpretable ML models [10].18

Sophisticated and interpretable ML models are a particularly exciting break-
through, as they enable practitioners to build accurate ML models that can also
be documented, explained to consumers, and readily tested and remediated
for discrimination. The diversity of interpretable ML models is also striking.
Interpretable ML models include variations of linear models (e.g., explainable

17E.g., New Patent-Pending Technology from Equifax Enables Configurable AI Models; see
also, Deep Insights into Explainability and Interpretability of Machine Learning Algorithms
and Applications to Risk Management.

18See comparisons of EBM with other interpretable and black-box models by Microsoft
Research: https://github.com/interpretml/interpret.

https://investor.equifax.com/news-and-events/press-releases/2018/08-22-2018-200402523
https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=303053
https://ww2.amstat.org/meetings/jsm/2019/onlineprogram/AbstractDetails.cfm?abstractid=303053
https://github.com/interpretml/interpret
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boosting machine (EBM, also known as GA2M) [11]), constrained tree-based
models (e.g., optimal sparse decision trees (OSDTs) [12], monotonic gradient
boosting machines (MGBMs)19), constrained neural networks (e.g., explainable
neural networks (XNNs) [13]), novel or constrained rule-based models (e.g., scal-
able Bayesian rule lists (SBRLs) [14], CORELS [15]), and several others. Levels
of interpretability vary from results that could only be understood by advanced
technical practitioners (e.g., MGBMs or XNNs) to results that business and legal
partners could likely consume directly, (e.g., OSDTs or SBRLs), to something
in-between, (e.g., EBMs). Beyond their obvious advantages for adverse action
notice requirements, interpretable ML models should also assist practitioners
in model governance and documentation tasks, such as understanding which
input features drive model predictions, how they do so, and which feature
behavior under the model aligns with human domain knowledge. Moreover,
interpretable models can help in discrimination testing and remediation by
transparent weighting and treatment of input features. For reference, Figure 2
displays model architecture and diagnostic information from a MGBM model
trained on data collected under the Home Mortgage Disclosure Act (HMDA).

4.2.2 Examples of Post-hoc Explanations

Post-hoc explanation techniques create summaries of varying types and accuracy
about ML model behavior or predictions. These summaries can provide an
additional, customizable layer of explanation for interpretable ML models, or
they can be used to gain some amount of insight regarding the inner-workings
of black-box ML models. Summary explanations can have global or local scopes,
both of which are useful for adverse action notice generation, model documen-
tation, and discrimination testing. Post-hoc explanations can be generated
through numerous approaches including direct measures of feature importance
(e.g., gradient-based feature attribution [16], Shapley values [17]), surrogate
models (e.g., decision trees [18],[19], anchors [20], local interpretable model-
agnostic explanations (LIME) [21]), and plots of trained model predictions (e.g.,
accumulated local effects (ALE) [22], partial dependence [23], and individual
conditional expectation (ICE) [24]).

Figure 3a provides an example of global feature importance, calculated by the
TreeSHAP method, which shows on average which input features are main
drivers of model decisions for an entire dataset. Figure 3b gives an example
of local TreeSHAP feature importance for three different individuals, showing
which input features made each individual the most different from the overall
average prediction of the model. Due to the ability to accurately summarize
individual model predictions, variants of Shapley values, and TreeSHAP in

19Monotonic GBM, as implemented in XGBoost or h2o.

https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/monotone_constraints.html
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particular, seem to be gathering momentum for adverse action notice generation
[25], [26]. Surrogate models are simple models derived from complex models.
They can be global, such as a decision tree surrogate model, which creates
a data-derived flow chart to describe the decision policies of a more complex
model, or they can be local, as with LIME approaches that model small regions
of a ML response function or decision boundary with an interpretable linear
model. Plots of trained model predictions take many forms. Figure 2 displays
examples of partial dependence and ICE plots acting as concise visual summaries
of complex model behaviors. Of course, like all other ML techniques, post-hoc
explanations approaches have pros and cons, and should never be regarded as a
perfect view into complex model behaviors. (See Subsection 4.2.5 for a more
detailed discussion of additional post-hoc explanation problems.)

Figure 2: Partial dependence and individual conditional expectation (ICE) plots
paired with histograms for a constrained MGBM model and HMDA data. Figure
reproduced from A Responsible Machine Learning Workflow with permission of
the authors [27].

Figures 2, 3a and 3b are displayed herein to give interested readers an illustration
of a constrained ML model and post-hoc explanation workflow. Figure 2 shows
partial dependence and ICE plots of a constrained MGBM that was trained to
predict whether a consumer will receive a high priced mortgage, i.e., a loan with
an annual percentage rate (APR) of at least 1.5% greater than similar loans
awarded in the same year. Figure 2 uses partial dependence and ICE to verify
that the MGBM learned a monotonically increasing relationship between loan to
value ratio and debt to income ratio and the probability that a consumer receives
a high-priced mortgage, independently. Because the data-global behavior of
the model, portrayed by partial dependence (red), does not diverge from the
data-local behavior of the model, represented by ICE curves at several deciles of
predicted probability w.r.t loan to value ratio and debt to income ratio, partial
dependence is likely to be an accurate global summary for the MGBM and
these two input features. For property value, non-monotonic behavior is visible
in the ICE curves at lower deciles of model predictions, indicating that the
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model did not learn a monotonic relationship between property value and the
probability that a customer receives a high priced loan. The non-monotonic
ICE curves can also indicate the presence of interactions that are averaged out
of the data-global partial dependence explanation or they can indicate that
partial dependence is failing for other reasons, such as correlation between
input features. Further model debugging, beyond the scope of this whitepaper,
would be required to assess the root cause of the local non-monotonic behavior
displayed for property value under the MGBM model.20 Pairing the partial
dependence and ICE plots of feature behavior in the MGBM with histograms
(Figure 2) is a diagnostic technique that allows practitioners to spot areas of
data sparsity, where predictions may be unstable or untrustworthy.

Figure 3a displays a quintessential global feature importance chart in which
loan to value ratio, debt to income ratio, and property value are the three most
important drivers of data-global MGBM behavior. Unlike inconsistent feature
importance charts readers may have seen in the past, note that this feature
importance chart was generated by aggregating accurate and consistent Shapley
values across every row of a dataset.

Value-local Shapley attributions can be seen for three individual customers at
various deciles of predicted probability in Figure 3b. These consumer-specific
values can be interpreted as the contribution that an input feature makes to drive
a prediction away from the average prediction. If this interpretation is not exactly
aligned with a given FI’s interpretation of the adverse action notice requirements
of ECOA Regulation B, or other applicable statutes, practitioners can change
background datasets or make causal modifications to arrive at Shapley values
with more customized interpretations ([28], [29]), such as comparing a rejected
customer to the average prediction for non-rejected customers. Furthermore, the
information in Figures 2, 3a and 3b can also be added to model documentation
or potentially be used to mitigate any discrimination problems that may arise
from a model (see Subsection 4.2.6).

4.2.3 The Importance of Dual Scope Explanations

An important, and often discussed, aspect of ML interpretability is the scope of
an explanation – whether an explanation is local or global. Many new research
papers focus on local explanations for evaluating the impact of a feature at the
individual customer level. However, seeing both a global and local view presents
a more holistic picture of model outcomes. For example, it is important for a
customer to understand what global factors resulted in an adverse action on
their credit decision (e.g., length of credit history), while also understanding

20Model debugging is an emergent discipline focusing on advanced and exhaustive testing
of sophisticated ML models, e.g., Real-world Strategies for Model Debugging .

https://towardsdatascience.com/strategies-for-model-debugging-aa822f1097ce
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(a) Global Shapley feature importance.

(b) Local Shapley feature importance for three individual customers at selected deciles of predicted
probability.

Figure 3: Global and local feature importance for a constrained MGBM model
and HMDA data. Figure reproduced from A Responsible Machine Learning
Workflow with permission of the authors [27].

what are the local factors that are within their control to achieve a favorable
outcome in the near future (e.g., lower utilization of credit limit). In addition
to the use of interpretable models, explanation approaches that consider both
global and local summaries are likely to be most informative to practitioners
and to consumers (as in Figures 2, 3a and 3b). For convenience, Table 1 below
buckets some common explanation techniques into different scopes as defined
in Subsection 3.2.

4.2.4 Grouping Correlated Features for Explanation

Many explanatory techniques are less accurate in the presence of correlated input
features [30], [31]. Grouping involves treating a group of correlated features,
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Table 1: Scope of common post-hoc explanation techniques.

Partial
Dependence

Tree
SHAP

LIME ALE
Decision

Tree
Surrogate

Data Scope
Global

(Subset for local)

Global
(Subset for local)

Local Local
Global

(Subset for local)

Value Scope Global Local Local Global Global

with strong correlations between features in the group and weak correlations
with features outside of the group, as one from an explanation standpoint.
Grouping presents benefits including the consideration of effects that features
have on each other in the presence of correlation. Note that the success of
grouping is likely contingent on the use of constrained models where measures
of global Pearson correlation are more meaningful than in unconstrained ML
models, which may focus almost entirely on complex local dependencies between
features.

4.2.5 Some Concerns with Post-hoc Explanations

As mentioned in previous sections, post-hoc explanation is not yet a perfect
science. Well-known pitfalls include partial dependence failing in the presence
of correlated or interacting input features, inaccurate surrogate models that
do not truly represent the underlying complex model they seek to summarize,
and inconsistencies in feature importance values [30], [31], [32]. Moreover, as
discussed in Subsection 4.2.4, few explanation methods are robust correlation
between input features. Subsection 4.2.5 will explore issues beyond these
direct mathematical concerns with specific explanation techniques, particularly
the fundamental issue of explanation inconsistency and problems with human
comprehension of explanations.

Inconsistent Explanations

Since many ML explanation techniques are inconsistent, different ML models, or
even different configurations of the same ML model or refreshing the same ML
model with new data, can result in different explanations for the same consumer
if not controlled. Inconsistency bears special consideration in financial services,
and especially for the generation of adverse action notices for credit lending
decisions, where two models giving different explanations to the same applicant
may raise questions, if not lead to regulatory non-compliance or reputational
harm for the FI. To mitigate risks associated with inconsistent explana-
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tions, FIs should pair post-hoc explanations with constrained and stable
ML models, explicitly test for explanation stability, and consider using
explanation techniques with consistency guarantees. It is the authors’
view, as well as many experts, that TreeSHAP presents the strongest theoretical
guarantees for accuracy and consistency, and Shapley values have a notable
presence in economics and game theory literature dating back to the early 1950s
[17], [33].

Human Comprehension of Explanations

Concerns have been raised that non-technical audiences (e.g., most credit
applicants) cannot easily understand ML models and explanations [31], [34],
[35]. In financial services, there are several less technical audiences to consider,
including validation and audit personnel, business partners, legal, and consumers.
The success of an explainable ML project often hinges on the comprehension of
model behavior by less technical audiences. To ensure the project is successful
and nontechnical experts are included, nontechnical stakeholders could be
included in project planning for explainable ML endeavors. In doing so, technical
practitioners can make best efforts toward enabling validation so nontechnical
partners can understand their ML results. Additionally, some have suggested
counterfactual explanations (i.e., explanations that tell a decision-subject what
can be done to change their ML-based decision to receive a more positive
outcome) are a preferred method for presenting ML decisions to a broader
population [31], [36]. While counterfactual explanations could be more intuitive
for some audiences, and perhaps suited for adverse action notice generation in
some cases, without careful treatment, they may suffer from the inconsistency
concerns raised in the subsection directly above.

4.2.6 Explanations for Discrimination Analysis

Explainable ML techniques can be used both to identify causes of discrimination
and to enable lenders to find potentially less discriminatory, but similarly
predictive alternative models. A difficulty with ML models is that they often
use far more features than traditional methods, which means that each feature
might only have a minimal effect on discrimination. This is problematic because
traditional techniques for discrimination mitigation focus on dropping or adding
just a few features – rarely more than two or three. In the case of an ML model
with dozens or hundreds of features, disparate impact (if any) is generally caused
by many features working in combination to cause the total negative effect on
some protected class(es). This means that changing two or three features alone
will often not provide a meaningful improvement in disparate impact. Further
compounding this problem, when a model contains highly correlated features
(which ML models often do), dropping one feature could only lead to another
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feature taking its place in terms of its discriminatory effect. Until recently,
these were merely ancillary problems because even identifying which features are
drivers of discrimination appeared to be nearly impossible in black-box models.
This is why it was challenging to use ML in credit decisioning. More recently,
providers of discrimination mitigation software and academics working on these
problems have shown that explanation techniques such as Shapley values can
be used to guide an understanding of both the discriminatory and predictive
impacts of each feature.21 With this information, a model builder can structure
a search for alternative models in a smarter way, by removing features that are
of low importance and have large disparate impact and keeping features that
are important and also beneficial to protected classes. This, in combination
with high-powered computing, which makes testing a large number of possible
alternative models feasible, allows model builders and compliance professionals
to perform a more robust search for less discriminatory models that maintain
their predictive ability [2].22

4.2.7 Considerations for Regulatory Compliance

ECOA and Regulation B do not prescribe a specific number of adverse action
notices to share with consumers, nor do they prescribe specific mathematical
techniques. However, regulatory commentary indicates that more than four
reasons may not be meaningful to a consumer. FIs also have flexibility in
selecting a method to identify principal reasons. Regulation B provides two
example methods for selecting principal reasons from a credit scoring system,
but allows creditors the flexibility to use any method that produces substantially
similar results. One method is to identify the features for which the applicant’s
score fell furthest below the average score for each of those features achieved
by applicants whose total score was at or slightly above the minimum passing
score. Another method is to identify the features for which the applicant’s score
fell furthest below the average score for each of those features achieved by all
applicants.23 Both examples appear to be aligned with the general principles
of Shapley values, counter-factual explanations, and other similar post-hoc
explanation techniques described in Sections 3 and 4.

21See Explaining Measures of Fairness with SHAP, which provides examples of how Shapley
values can be compared across protected class groups in order to understand the effects of
a model’s features on fairness metrics. This notebook was created by Scott Lundberg, the
author of several authoritative papers on Shapley values.

22For example, through the use of Shapley values to weight the predictive and potentially
discriminatory effect of features, BLDS, LLC’s fairness software, ConsilienceML, has been
shown to quickly converge to less discriminatory, but highly predictive alternative models that
maintain business justification.

23See The Official Commentary of 12 CFR §1002.9(b)(2) for Regulation B.

https://bit.ly/3nGMwZh
https://bit.ly/3kWIfit
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5 Conclusion

The advent and increasingly widespread use of ML in lending has the promise
of being more inclusive to historically underserved populations than traditional
underwriting. We hope this whitepaper helps to dispel some of the myths
and inaccuracies about ML and, in turn, provide a simplified, yet substantive,
discussion of key definitions and considerations for using ML within the lend-
ing context. More importantly, we hope this whitepaper has demonstrated
that the use of ML for lending is not only viable, but in many ways better
suited to ensuring that FIs make credit decisions that are based on reliable
predictive analytics and free of unlawful discrimination. As for advances in
the interpretability of ML, additional options exist today to train sophisticated
ML models and explain them to various audiences. While questions remain as
to which methods will be viewed as most useful for ensuring compliance with
regulatory requirements, such as adverse action notice regulations, variants of
constrained models, Shapley values, and counterfactual explanations appear to
be gaining some momentum in the US lending community.

In the fair lending context, there are well-established discrimination testing and
mitigation methodologies that have been used for decades. In recent years,
as researchers and engineers have developed ML technology with the goal
of increasing the availability of credit while decreasing discrimination, some
tension has arisen between traditionally accepted fair lending methodologies and
the newly-developed ML fairness tools. Fair lending practitioners must work
carefully with legal and compliance personnel to leverage recent ML advances
without unintentionally neglecting compliance with existing regulatory and legal
standards. Of course, discrimination and interpretability are only two of many
concerns about ML for first-, second-, and third-line personnel at FIs. As models
become more sophisticated and FIs become more dependent upon them, and as
data privacy and artificial intelligence regulations grow in number and complexity,
proper model governance and human review, and closer collaboration between
legal, compliance, audit, risk, and data science functions will likely only increase
in importance.
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